Energy Efficiency Improvement in a Modified Ethanol Process from Acetic Acid

نویسنده

  • Young Han Kim
چکیده

For the high utilization of abundant lignocellulose, which is difficult to directly convert into ethanol, an energy-efficient ethanol production process using acetic acid was examined, and its energy saving performance, economics, and thermodynamic efficiency were compared with the conventional process. The raw ethanol synthesized from acetic acid and hydrogen was fed to the proposed ethanol concentration process. The proposed process utilized an extended divided wall column (DWC), for which the performance was investigated with the HYSYS simulation. The performance improvement of the proposed process includes a 27% saving in heating duty and a 41% reduction in cooling duty. The economics shows a 16% saving in investment cost and a 24% decrease in utility cost over the conventional ethanol concentration process. The exergy analysis shows a 9.6% improvement in thermodynamic efficiency for the proposed process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Exergy Analysis and Response Surface Methodology (RSM) for Reduction of Exergy Loss in Acetic Acid Production Process

Exergy analysis and response surface methodology (RSM) is applied to reduce the exergy loss and improve energy and exergy efficiency of acetic acid production plant. Exergy analysis is run as a thermodynamic tool to assess exergy loss in reactor and towers of acetic acid production process. The process is simulated in Aspen Plus(v.8.4) simulator and the necessary thermodynamics data for calcula...

متن کامل

A novel high ethanol-thermo-tolerant Acetobacter pasteurianus KBMNS-IAUF-2 strain and the optimization of acetic acid production using the Taguchi statistical method

Because of the high energy consumption for fermentor cooling, the isolation of thermo-tolerant Acetobacter strains for vinegar production has a high priority. The aims of this study were the isolation and identification of a high ethanol-thermo-tolerant Acetobacter spp. from grapes as well as the optimization of conditions for increasing the acetic acid production. The grape e...

متن کامل

A novel high ethanol-thermo-tolerant Acetobacter pasteurianus KBMNS-IAUF-2 strain and the optimization of acetic acid production using the Taguchi statistical method

Because of the high energy consumption for fermentor cooling, the isolation of thermo-tolerant Acetobacter strains for vinegar production has a high priority. The aims of this study were the isolation and identification of a high ethanol-thermo-tolerant Acetobacter spp. from grapes as well as the optimization of conditions for increasing the acetic acid production. The grape e...

متن کامل

Solubility of Cis, Cis-Muconic Acid in Various Polar Solvents from 298.15 K to 348.15 K

The present work concerns with an investigation on the solubility of cis,cis-muconic acid dissolution in different polar solvents by characterizing and modeling the dissolution as a function of temperature. Water, ethanol, 2-propanol and acetic acid have been investigated as solvents in the range temperatures from a 298.15 to 348.15 K. Owing to the absence of cis,cis-muconic acid solubility...

متن کامل

Immobilizing Phosphotungstic Acid on Al2O3-ZnO Nano Mixed Oxides as Heterogeneous Catalyst for Biodiesel Production by Esterification of Free Fatty Acids

In this study, esterification reaction of different carboxylic acids (Acetic acid, Palmitic acid, Oleic acid) with ethanol was investigated by ZnO, Al2O3-ZnO mixed oxide and phosphotungestic acid (10 %wt) immobilized on the Al2O3-ZnO mixed oxide. The heterogeneous catalysts were characterized by XRD, BET, FE-SEM and EDX techniques. Optimum yield was achieved by using 10% HPW/Al2O3-ZnO as the be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Entropy

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2016